SECURITY INFORMATION

RESTRICTED

RM E52L11

FEB 181953

MINFORMATION

RESEARCH MEMORANDUM

THEORETICAL PERFORMANCE OF LIQUID HYDROGEN AND LIQUID

FLUORINE AS A ROCKET PROPELLANT

By Sanford Gordon and Vearl N. Huff.

Lewis Flight Propulsion Laboratory Cleveland, Ohio

CLASSIFICATION CHANGED

CLASSIFIED DOCUMENT

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

February 6, 1953

SECURITY INFORMATION

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

THEORETICAL PERFORMANCE OF LIQUID HYDROGEN AND LIQUID

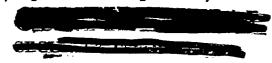
FLUORINE AS A ROCKET PROPELLANT

By Sanford Gordon and Vearl N. Huff

SUMMARY

Theoretical values of performance parameters for liquid hydrogen and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity.

The maximum value of specific impulse was 364.6 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.


INTRODUCTION

Liquid hydrogen and liquid fluorine are of interest as a rocket propellant because of their extremely high performance. Extensive data exist in the literature on their availability, cost, and physical, chemical, and handling properties.

The performance of liquid hydrogen and liquid fluorine has been reported in the literature by a number of organizations such as Jet Propulsion Laboratory, California Institute of Technology; The RAND Corp.; North American Aviation, Inc.; and NACA. Additional performance calculations for this propellant were made at the NACA Lewis laboratory as part of a series of calculations on propellants containing the chemical elements hydrogen, fluorine, and nitrogen to provide a comparison with the performance of other propellants based on the same thermodynamic data and computed to the same degree of accuracy, and to provide several parameters not previously published.

Data were calculated on the basis of equilibrium composition during expansion and cover a wide range of fuel-oxidant and expansion ratios. The performance parameters included are specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition,

280

ductivity.

mean molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal con-

In order to compare data based on the assumptions of equilibrium and frozen composition during the expansion process, several additional calculations were made in which frozen composition was assumed.

SYMBOLS

The following symbols are used in this report:

A number of equivalent formulas (a function of pressure and molecular weight; see ref. 1)

a local velocity of sound, ft/sec

C_F coefficient of thrust

c_p specific heat at constant pressure, cal/(g)(OK)

 c_p/c_v ratio of specific heats

c* characteristic velocity, ft/sec

$$D_{A} \qquad \qquad \left(\frac{\partial \log A}{\partial \log T}\right)_{S}$$

$$D_{i} \qquad \left(\frac{\partial \log p_{i}}{\partial \log T}\right)_{s}$$

 $f_1, f_2, \dots f_5$ functions

g acceleration due to gravity, 32.174 ft/sec²

 ${f H}_{
m T}^{
m O}$ sum of sensible enthalpy and chemical energy, cal/mole

h sum of sensible enthalpy and chemical energy per unit

weight,
$$\frac{\sum_{i} n_{i}(H_{T}^{O})i}{nM}$$
, cal/g

I specific impulse, lb-sec/lb

2801

	k
.	L
	М
	n
તે	P
7801	P
	R
	r
	r _o
-	S
	T
-	∇/[W ⁽²⁾ (2)]
	$\overline{\mathbf{v}}$
	w
	$ au_{ extsf{s}}$
	μ
	ρ
	σ
	Subscripts:

coefficient of thermal conductivity, cal/(sec)(cm)(OK) mean free path, cm molecular weight, g/mole number of moles; exponent pressure partial pressure universal gas constant (consistent units) equivalence ratio, ratio of number of fluorine atoms to hydrogen atoms collision diameter for low-energy head-on collision between two molecules, A nozzle area, sq ft temperature, OK a function of kT/ϵ where k is Boltzmann's constant and € is the energy difference between separated molecules and molecules in the configuration for which they have the maximum energy of attraction mean molecular speed, cm/sec, equal to 0.921 // 3RT/M rate of flow, lb/sec $\left(\frac{\partial \log P}{\partial \log \rho}\right)_{s}$ coefficient of viscosity, g/(cm)(sec) = poisedensity, .g/cm³ molecular diameter for viscosity and heat conduction,

combustion chamber С

nozzle exit е

i	product of combustion
max	maximum
0	conditions at 0° K, assuming recombination is complete
В	constant entropy
Т	temperature
t	nozzle throat
x	any point in nozzle

CALCULATION OF PERFORMANCE

Equilibrium composition, combustion temperature, velocity of sound, and specific heat at constant pressure were calculated by the method described in reference 1 with modifications to adapt it for use with automatic computing machines. The Bell computer at the NACA Langley laboratory was operated with seven significant figures and was used to compute combustion and exit conditions. The successive approximation process used to obtain the desired values of the assigned parameters (mass balance and pressure or entropy balance) was continued until six-figure accuracy was achieved. The IBM Card Programmed Electronic Calculator at the NACA Lewis laboratory, which was used for all interpolations and calculation of transport properties, was operated with numbers in floating-point notation and eight significant figures.

Assumptions

The calculations were based on the following usual assumptions: perfect gas law, adiabatic combustion at constant pressure, isentropic expansion, no friction, homogeneous mixing, and one-dimensional flow. The products of combustion were assumed to be ideal gases and included the following substances: hydrogen H_2 , hydrogen fluoride HF, fluorine F_2 , atomic hydrogen H, and atomic fluorine F.

Thermodynamic Data

The thermodynamic data used in the calculations were taken from reference 1 which selected the lower value of 35.6 kilocalories per mole for the dissociation energy of F_2 (see ref. 2). Physical and thermochemical properties of the propellants were taken from references 1 to 5 and are given in table I.

Transport Properties

Viscosity and thermal conductivity data are needed for heattransfer calculations; however, accurate data for gases at high temperatures are unavailable in the literature. In order to obtain a first approximation to the transport properties of mixtures of combustion gases for propellants containing fluorine, hydrogen, and nitrogen, coefficients of viscosity for the individual components were estimated as described in the following paragraphs and are given in table II:

 $\rm H_2$ and $\rm N_2$. - Data for $\rm H_2$ and $\rm N_2$ were calculated by the method of reference 6, which gives the following expression for the coefficient of viscosity

$$\mu \times 10^7 = 266.93 \, (MT)^{\frac{1}{2}} \, (r_0)^{-2} \, V/[W^{(2)}(2)]$$
 (1)

The values of r_0 and ϵ and tables of the functions $V/[W^{(2)}(2)]$ used in the calculations were taken from reference 6.

F, H, and N. - Data for F, H, and N were calculated by the method of reference 7 which relates coefficient of viscosity and temperature according to the equation

$$\mu_{\rm T} = \mu_{\rm 288} \, (T/288)^{\rm n}$$
 (2)

The following equation from reference 8 was used to compute the coefficient of viscosity at 288° K

$$\mu = 0.499 \ \rho \overline{v} L \tag{3}$$

The exponent n may be estimated from figure 1 (taken from ref. 7) which is a plot of n versus σ for a number of gases.

The values of μ_{288} calculated from equation (3) and of n estimated from figure 1 are as follows:

Gas	μ_{288} , poise X 10^7	n
F	2751	0.695
Ħ	802	.663
N	1916	.734

100

 $\underline{\text{HF.}}$ - No experimental values for the viscosity of $\underline{\text{HF}}$ were found in the literature. The experimental values of μ_{288} for the other hydrogen halides were found to differ from the values obtained from equation (3). Therefore, the value of μ_{288} for $\underline{\text{HF}}$ obtained from equation (3) was corrected by a similar difference resulting in a value of 0.0001603 poise.

Because HF is a polar molecule, the value of the exponent n for HF would be expected to lie above the curve of figure 1. A value 0.984 for n was estimated from the values of the exponents of the other hydrogen halides.

Inasmuch as the value of viscosity of HF at high temperatures is very uncertain and HF is present in very considerable quantities in the combustion products, caution should be exercised in the use of these data. However, the data tabulated are believed to be sufficiently accurate for most engineering purposes until better data become available.

 F_2 . - Viscosity data for F_2 were not estimated since the amount of F_2 which exists as a reaction product is negligible.

Method of Calculation

Procedure for combustion conditions. - For each of ll equivalence ratios, temperature, equilibrium composition, enthalpy, mean molecular weight, derivative of the logarithm of pressure with respect to the logarithm of density at constant entropy $\gamma_{\rm S}$, specific heat at constant pressure, coefficient of viscosity, coefficient of thermal conductivity, and entropy of the combustion products were computed at a combustion pressure of 300 pounds per square inch absolute (20.41 atm).

The function $\left(\frac{\partial \log P}{\partial \log \rho}\right)_s = r_s$ was used in the computation of throat conditions, since

$$a^{2} = \left(\frac{\partial P}{\partial \rho}\right)_{s} = \left(\frac{\partial \log P}{\partial \log \rho}\right)_{s} \frac{P}{\rho} = \Upsilon_{s} R_{\overline{M}}^{\overline{T}}$$
(4)

The derivative γ_s is equal to the ratio of specific heats c_p/c_v only when the molecular weight is constant. In the nomenclature of reference 1,

$$\Upsilon_{S} = \frac{\sum_{i} p_{i} D_{i}}{P(D_{A} - 1)}$$
 (5)

where

$$D_{i} = \left(\frac{\partial \log p_{i}}{\partial \log T}\right)_{g}$$

and

$$D_{A} = \left(\frac{\partial \log A}{\partial \log T}\right)_{S}$$

The numerical values of D_1 and D_A were computed by the method given in reference 1 and were used to calculate the value of γ_s .

Procedure for exit conditions. - Equilibrium composition, mean molecular weight, pressure, derivative of the logarithm of pressure with respect to the logarithm of density at constant entropy $\gamma_{\rm S}$, enthalpy of the products of combustion, specific heat at constant pressure, coefficient of viscosity and coefficient of thermal conductivity were computed for each equivalence ratio by assuming isentropic expansion for four assigned exit temperatures selected to cover the exit pressure range from the nozzle-throat pressure to about 0.1 atmosphere.

Interpolation formulas. - Throat parameters and exit parameters corresponding to altitudes of 0, 10,000, 20,000, 30,000, 40,000, and 50,000 feet were interpolated by means of cubic equations between each pair of the assigned exit temperatures. The coefficients of the cubic equations were determined from the values of the following functions and their first derivatives at each pair of the assigned exit temperatures.

$$f_{\perp} = \ln \left(\frac{h}{R} + \frac{\Upsilon_B T}{2M} - \frac{h_0}{R} \right)$$

$$f_2 = h/R$$

$$f_3 = \ln T$$

$$f_4 = ln M$$

$$f_5 = \ln P$$

$$\begin{split} \frac{\mathrm{df}_1}{\mathrm{df}_5} &= \frac{T}{2\mathrm{Mf}_1} \left(\gamma_s + 1 + \frac{\mathrm{d}\gamma_s}{\mathrm{d}f_5} \right) \\ \frac{\mathrm{df}_2}{\mathrm{df}_5} &= \frac{T}{\mathrm{M}} \\ \\ \frac{\mathrm{df}_3}{\mathrm{df}_5} &= \frac{1}{\gamma_s (D_\mathrm{A} - 1)} \\ \\ \frac{\mathrm{df}_4}{\mathrm{df}_5} &= \frac{D_\mathrm{A}}{\gamma_s (D_\mathrm{A} - 1)} - 1 \end{split}$$

(The value of $d\gamma_s/df_5$ was found by a numerical method.)

The pressure at the throat was found by interpolating f_5 as a function of f_1 for the point $f_1 = \ln (h_c/R - h_0/R)$, at which the velocity of flow equals the velocity of sound. The values of the remaining functions were interpolated as functions of f_5 , for the desired pressures.

The errors due to interpolation were checked for several cases. The values presented for all performance parameters appear to be correctly interpolated to one or two units in the last place tabulated.

Formulas...

The formulas used in computing the various performance parameters are given in the following paragraphs:

Specific impulse. - Specific impulse was calculated from the difference in enthalpy between the combustion chamber and the nozzle exit by the following equation derived from the energy equation

$$I = 294.98 \sqrt{\frac{h_c - h_e}{1000}}$$
 (6)

Throat area per unit flow rate. - For equilibrium composition during expansion, the throat area per unit flow rate was obtained from the continuity equation and with pressure in atmospheres becomes

$$S_t/w = \frac{1.3144 T_t}{P_t M_t a}$$
 (7)

2R

Characteristic velocity. - The equation for characteristic velocity for a combustion pressure of 300 pounds per square inch absolute

$$c^* = gP_c S_t/w = 1.3899 \times 10^6 S_t/w$$
 (8)

Coefficient of thrust. - The coefficient of thrust was obtained from the defining equation

$$C_{\rm F} = Ig/c^* = 32.174 I/c^*$$
 (9)

Area ratios. - In order to calculate ratio of nozzle-exit area to throat area Se/St, values of the nozzle-exit area per unit flow rate were first obtained from the equation:

$$S_e/w = \frac{0.040853 T_e}{P_e M_e I}$$
 (10)

where Pe is in atmospheres.

Coefficient of viscosity. - The coefficient of viscosity for a mixture of combustion products was obtained by averaging the viscosities of the individual components according to the equation

$$\mu = \frac{PM}{\sum_{i} \frac{p_{i}}{(\mu_{i}/M_{i})}} \tag{11}$$

Several other methods for obtaining viscosities of mixtures are given in the literature (refs. 9 and 10). A check made at several points between the values of coefficient of viscosity obtained by equation (11) and by the other more laborious methods showed that the differences resulting were insignificant compared to the uncertainties in the viscosity data for the individual components.

Coefficient of thermal conductivity. - The coefficient of thermal conductivity for a mixture of combustion products was obtained from the values of specific heat at constant pressure and coefficient of viscosity of the mixture according to the Euken equation written in the form

$$k = \mu \left(c_p + \frac{5}{4} \frac{R}{M} \right) \tag{12}$$

Specific heat at constant pressure. - The specific heat at constant pressure is defined as follows:

$$c_{p} = \left(\frac{\partial h}{\partial T}\right)_{p} = \left(\frac{\partial \sum_{i} \frac{n_{1}(H_{T}^{O})_{i}}{nM}}{\partial T}\right)_{p}$$
(13)

In the nomenclature of reference 1

$$c_{p} = \frac{1}{nMT} \left[T \sum_{i} n_{i} (C_{p}^{o})_{i} + \sum_{i} n_{i} (H_{T}^{o})_{i} Y_{i} + \sum_{i} n_{i} (H_{T}^{o})_{i} Y_{A} \right]$$
(14)

where

$$Y_i = \left(\frac{\partial \log n_i}{\partial \log T}\right)_p$$

$$Y_{\mathbf{A}} = \left(\frac{\partial \log A}{\partial \log T}\right)_{\mathbf{P}}$$

and C_p^O is the molar specific heat at constant pressure. The numerical values of the partial derivatives Y_i and Y_A were computed by the method given in reference 1 and were used to compute the value of c_p .

Specific heat and specific heat ratio for frozen composition. - In the case of frozen composition, the values of D_1 and D_A are equal to $\gamma/\gamma-1$ and the values of Y_1 and Y_A are equal to zero. Equation (13) therefore reduces to the familiar form

$$(c_p)_{\text{frozen}} = \sum_{i} \frac{n_i(c_p^0)_i}{nM}$$
 (15)

and equation (5) reduces to $\gamma_g = \gamma$ where

$$\gamma = \frac{(c_p)_{\text{frozen}}}{(c_p)_{\text{frozen}} - R/M}$$
 (16)

2801

THEORETICAL PERFORMANCE

The calculated values of the various performance parameters for a combustion pressure of 300 pounds per square inch absolute and at exit pressures corresponding to altitudes of 0, 10,000, 20,000, 30,000, 40,000, and 50,000 feet are given in table III for 11 equivalence ratios. The values of pressure corresponding to the assigned altitudes were taken from reference 11. As an aid to engine design, the values of the parameters within the rocket nozzle for 80, 90, 100, 110, and 120 percent of the throat pressure are tabulated in table IV. Equilibrium composition, $\gamma_{\rm S}$, specific heat at constant pressure, coefficient of viscosity, coefficient of thermal conductivity, and mean molecular weight in the combustion chamber and at assigned exit temperatures are given in table V. The mole fraction of F2 was always less than 0.00002 and therefore was not tabulated in table V.

Parameters. - The parameters are plotted in figures 2 to 7. Curves of specific impulse for the six altitudes are shown in figure 2 plotted against weight percent fuel. The maximum value of specific impulse for the sea-level curve is 364.6 pound-seconds per pound at 14.7 percent of fuel by weight.

The maximum values of specific impulse and the weight percents of fuel at which they occur were obtained by numerical differentiation of the calculated values and are shown in figure 3 as functions of altitude. The maximum specific impulse increased 19 percent for a change in altitude from sea level to 50,000 feet.

Curves of combustion-chamber temperature and nozzle-exit temperature for the six altitudes are presented in figure 4 as functions of weight percent fuel. The maximum combustion temperature obtained was 4581° K at 4.6 percent fuel by weight. The maximums of the exit temperature curves occur near the stoichiometric ratio.

Characteristic velocity and coefficient of thrust are plotted in figure 5 and ratios of the area at the nozzle exit to area at the throat are shown in figure 6 as functions of weight percent fuel.

Curves of mean molecular weight in the combustion chamber and nozzle exit are plotted against weight percent fuel in figure 7.

Frozen composition. - In order to compare data based on the assumptions of equilibrium and frozen composition during the expansion process, several additional calculations were made assuming frozen composition and are presented in the following table together with corresponding equilibrium data for two equivalence ratios and expansion to two altitudes:

Parameters		r=	1.0		r = 0.3					
	Sea level		50,000	feet	Sea 1	evel	50,000 feet			
	Equili- brium	Frozen	Equili- brium	Frozen	Equili- brium	Frozen	Equili- brium	Frozen		
I, lb-sec/lb	341.5	312.8	420.7	363.4	364.6	351.7	430.7	411.0		
c^* , ft/sec	7687	7288	7687	7288	8393	8167	8393	8167		
$\mathtt{C}_{\mathbf{F}}$	1.429	1.381	1.761	1.604	1.398	1.386	1.651	1.619		
$\mathrm{s_e/s_t}$	3.987	3.049	21.30	12.25	3.384	3.154	14.24	13.00		
Te, OK	34 56	2074	2749	1112	1882	1597	1075	884		
$\mathtt{M}_{\mathbf{e}}$	18.75	16.95	19.72	16.95	10.32	10.01	10.32	10.01		

For a combustion pressure of 300 pounds per square inch absolute and an exit pressure of 1 atmosphere, the values of maximum specific impulse are 364.6 pound-seconds per pound at 14.7 percent fuel by weight for equilibrium composition during expansion and 356.2 pound-seconds per pound at 19.4 percent fuel by weight for frozen composition during expansion.

Chamber pressure effect. - Values of c^* , C_F , and S_e/S_t previously calculated at this laboratory for chamber pressures of 300, 1000, and 2000 pounds per square inch absolute at the stoichiometric equivalence ratio for an expansion ratio of 136.1 are given as follows:

P _c (lb/sq in. abs)	c* (ft/sec)	c _F	s _e /s _t
300	7688	1.728	17.27
1000	7838	1.718	16.63
2000	7918	1.712	16.27

These parameters are very nearly linear with the logarithm of chamber pressure. Increasing chamber pressure by a factor of 2 results in changes of 1.0 percent for c^* , -0.4 percent for C_F , and -2.2 percent for S_e/S_t .

According to unpublished NACA data for liquid hydrazine with liquid fluorine, about the same percentage differences in these parameters due to chamber pressure were also found at the stoichiometric equivalence ratio and smaller differences were found on either side of stoichiometric.

It is expected that the values of c^* , C_F , and S_e/S_t given in this report for a chamber pressure of 300 pounds per square inch

absolute may be used for other chamber pressures at constant expansion ratios with similar small errors.

Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio

REFERENCES

- 1. Huff, Vearl N., Gordon, Sanford, and Morrell, Virginia E.: General Method and Thermodynamic Tables for Computation of Equilibrium Composition and Temperature of Chemical Reactions. NACA Rep. 1037, 1951.
- 2. Rossini, Frederick D., Wagman, Donald D., Evans, William H., Levine, Samuel, and Jaffe, Irving: Selected Values of Chemical Thermodynamic Properties. Nat. Bur. Standards Circular No. 500, Dept. Commerce, Feb. 1952.
- 3. Anon.: International Critical Tables. Vol. I., McGraw-Hill Book Co., Inc., 1926.
- 4. Kilner, Scott B., Randolph, Carl L., Jr., and Gillespie, Rollin W.: The Density of Liquid Fluorine. Jour. Am. Chem. Soc., vol. 74, no. 4, Feb. 20, 1952, pp. 1086-1087.
- 5. Brinkman, H. C.: The Viscosities of Liquid Deuterium and Hydrogen. Physica, vol. 7, no. 5, Mei 1940, pp. 447-448.
- 6. Hirschfelder, Joseph O., Bird, R. Byron, and Spotz, Ellen L.: The Transport Properties for Non-Polar Gases. Jour. Chem. Phys., vol. 16, no. 10, Oct. 1948, pp. 968-981.
- 7. Gilbert, Mitchell: Estimation of the Viscosity, Conductivity, and Diffusion Coefficients of O, H, N, and OH. Memo. No. 4-51, Power Plant Lab., Proj. No. MX527, Jet Prop. Lab., C.I.T., July 6, 1949. (AMC Contract No. W33-038-ac-4320, Ordnance Dept. Contract No. W-04-200-ORD-455.)
- 8. Chapman, Sydney, and Cowling, Thomas G.: The Mathematical Theory of Non-Uniform Gases. Cambridge Univ. Press (Cambridge, England), 1939.
- 9. Hirschfelder, Joseph O., Bird, R. Byron, and Spotz, Ellen L.: The Transport Properties of Gases and Gaseous Mixtures. II. Chem. Rev., vol. 44, no. 1, Feb. 1949, pp. 205-231.
- 10. Wilke, C. R.: A Viscosity Equation for Gas Mixtures. Jour. Chem. Phys., vol. 18, no. 4, April 1950, pp. 517-519.
- 11. Diehl, Walter S.: Standard Atmosphere Tables and Data. NACA Rep. 218, 1925.

TABLE I - PROPERTIES OF LIQUID PROPELLANTS

NACA J
~_~~
~~ ~~

		•
Propellant —	Hydrogen	Fluorine
Properties		
Molecular weight, M	2.016	38.00
Density, g/cc	a _{0.0709} (at -252.7° C)	^b 1.54 (at -196° C)
Freezing point, OC	c-259.20	c-217.96
Boiling point, °C	c-252.77	c_187.92
Viscosity, centipoises	^d 0.0215 (at -258.33 ⁰ C)	
Enthalpy of formation at boiling point from elements at 25° C, ΔH ₂ , kcal/mole	e_1.895	e _{-3.030}
Enthalpy of vaporization, ΔH , kcal/mole	<u> </u>	^C 1.51 (at -187.92 ^O C)
Enthalpy of fusion, AH, kcal/mole	^c 0.028 (at -259.20°C)	^C O.372 (at -217.96 ^O C)

Reference 3.

bReference 4.

cReference 2.

dReference 5.
eReference 1.

TABLE II - COEFFICIENT OF VISCOSITY

				_								~	
Temper-			Visc	osity			Temper-	1		Viscos	itv		
ature T		μ,		e X 107			ature T		μ,	poise			
°K	HF	H ₂	N ₂	F	н	N	°K	HF	H ₂	N ₂	F	H	N
100	566	416	687	1,319	398	881	2600	13,971	3627	7,585	12,694	3449	9,63
200	1,120	683	1296	2,135	630	1466	2700	14,499	3716		13,032		
288	1,603	872	1731	2,751	802	1916	[[2800	15,028	3804		13,365		
300	1,669	896	1785		824	1974	2900	15,552			13,696		
400	2,215	1083	2202	3,457		2438	3000	16,084			14,022		
500	2,759				1156	2872]]	'		′	′		'
600	3,301	1407	2914	4,582	1305	3284	3100	16,610	4069	8,496	14,345	3876	10,96
700	3,841	1554	3231	5,100			3200	17,138	4153	, ,	14,665		
800	4,381	1694	3530	5,596	1579	4056	3300	17,665	4237		14,982		
900	4,919	1828	3815	6,073	1707	4422	3400	18,192	4319		15,296		
1000	5,456	1956	4095	6,534			3500	18,718	4401		15,608		11,98
1100	5,993	2080	4348	6,982	1950	5124	3600	19,244	4481	9,356	 15,916	4280	12.23
1200	6,528	2200	4606	7,417			3700	19,770	4561		16,222		
1300	7,063			7,842			3800	20,296	4640		16,526		
1400	7,598						3900	20,822			16,827		12,97
1500	8,131			8,662			4000	21,347	4796	10,023			
1600	8,664	2652	55 4 5	9,059	2500	67 4 6	4100	21,871	4873	10,184	17 ,4 22	4665	 13,45
1700	9,197	2757	5767	9,449	2602	7053	4200			10,344			
1800	9,729					7355	4300			10,502			
1900				10,208		7652	4400			10,659			14,17
2000				10,578		7946	4 500			10,814			14,41
2100	11,323	3160	6609	10,943	2994	8236	4600	24,492	5249	10,969	18,872	5035	14,64
2200				11,303		8522	4700			11,122			
2300				11,658		8805	4.800			11,274			
2400				12,008		9084	4900			11,425			
2500				12,353			5000			575,11			

TABLE III - CALCULATED PERFORMANCE OF LIQUID HYDROGEN WITH LIQUID FLUORINE

[Combustion-chamber pressure, 300 lb/sq in. absolute.]

	Propellar		Combass	tion chamber	Managhan.	aracter- Nozzle exit						
Equi v −	Weight- percent	Density (g/cc)	Temper- ature To (°K)	r	istic	Altitude (ft)	Pressure Pe (atm)		Mean molecular weight Me	Ratio of		Specific impulse I (lb-sec/lb)
1.2	4.234	0.820	4568	17.95	7452	0 10,000 20,000 30,000 40,000 50,000	1.0 .6876 .4594 .2968 .1852	2834 2555 2265	19.68 19.78 19.83 19.85 19.85 19.85	3:861 5:003 6:581 8:830 12:13 16:77	1.424 1.491 1.555 1.615 1.672 1.720	329.8 345.4 360.2 374.2 387.2 398.4
1.1	4.601	0.788	4581	17.49	7571	0 10,000 20,000 30,000 40,000 50,000	1.0 .6876 .4594 .2968 .1852 .1149	3139 2939 2688	19.33 19.51 19.68 19.82 19.89 19.91	5.967 5.230 7.071 9.767 13.73 19.17	1.428 1.497 1.565 1.631 1.694 1.749	336.1 352.4 368.3 388.7 398.6 411.6
1.0	5.038	0.753	4578	16.95	7687	0 10,000 20,000 30,000 40,000 50,000	1.0 .6876 .4594 .2968 .1852	3207 3069 2915	18.75 18.94 19.14 19.35 19.55	3.987 5.281 7.192 10.10 14.63 21.30	1.429 1.499 1.568 1.635 1.701	341.5 358.2 574.5 390.6 406.4 420.7
0.9	5.567	0.715	4539	16.33	7801	0 10,000 20,000 30,000 40,000 50,000	1.Q .6876 .4594 .2968 .1852 .1149	3117 2956 2774	18.00 18.18 18.36 18.53 18.70 18.84	3.962 5.230 7.090 9.890 14.18 20.41	1.428 1.497 1.565 1.631 1.695 1.753	346.3 363.1 378.5 395.5 411.1 425.1
0.8	6.219	0.673	4470	15.61	7907	0 10,000 20,000 30,000 40,000 50,000	1.0 .6876 .4594 .2968 .1852	2953 2783 2596	17.14 17.29 17.45 17.61 17.76 17.87	5.892 5.117 6.905 9.589 13.69 19.62	1.425 1.493 1.559 1.623 1.685 1.741	350.1 386.8 383.0 398.8 414.1 427.8
0.7	7.045	0.626	4355	14.80	7997	0 10,000 20,000 30,000 40,000 50,000	1.0 .8876 .4594 .2968 .1852	2778 2605 2412	18.18 16.32 16.46 16.59 16.69 18.77	3.850 5.024 6.763 9.360 13.30 18.93	1.421 1.488 1.552 1.615 1.676 1.730	353.2 369.7 385.8 401.5 416.5 430.0

TABLE III - CALCULATED PERFORMANCE OF LIQUID HYDROGEN WITH LIQUID FLUORINE - Concluded

[Combustion-chamber pressure, 300 lb/sq in. absolute.]

T	VÁC Á	
•	┈	_

			01			**************************************						
	Propellar		<u> </u>		Character- istic				Nozzle exi			
	Weight- percent fuel		Temper- sture T _C (°K)	Mean molec- ular weight Mo		Altitude (ft)	Pressure Pe (atm)	Temper- ature Te (OK)	Mean molecular weight Me	Ratio of nozzle- exit area to throat area Se/St		Specific impulse I (1b-sec/lb)
0.6	8.124	0.574	4187	13.87	8076	0 10,000 20,000 30,000 40,000 50,000	1.0 .6876 .4594 .2968 .1852	2581 2396	15.10 15.21 15.31 15.40 15.46 15.49	3.786 4.953 6.639 9.126 12.85 18.11	1.418 1.484 1.548 1.610 1.668 1.721	356.1 572.6 588.6 404.0 418.8 431.9
0.5	9.593	0.515	5967	12.81	8163	0 10,000 20,000 30,000 40,000 50,000	1.0 .6876 .4594 .2968 .1852 .1148		13.82 13.89 13.95 13.98 14.00 14.01	3.731 4.852 6.450 8.770 12.20 17.02	1.416 1.481 1.543 1.603 1.659 1.708	359.3 375.8 391.5 406.6 420.9 433.4
0.4	11.71	0.449	3693	11.56	8276	0 10,000 20,000 30,000 40,000 50,000	1.0 .5876 .4594 .2968 .1852 .1149	1977 1782	12.25 12.27 12.29 12.30 12.30 12.30	3.610 4.644 6.098 8.203 11.31 15.69	1.411 1.473 1.532 1.588 1.640 1.686	362.8 378.9 394.1 408.5 421.9 433.6
0.3	15.05	0.374	3323	10.01	8393	0 10,000 20,000 30,000 40,000 50,000	1.0 .8876 .4594 .2968 .1852	1551 1386	10.32 10.32 10.32 10.32 10.32	3.384 4.310 5.617 7.511 10.31 14.24	1.398 1.456 1.511 1.562 1.610 1.651	364.6 379.8 394.1 407.5 419.9 430.7
0.2	20.97	0.288	2720	7.969	6359	0 10,000 20,000 30,000 40,000 50,000	1.0 .6876 .4594 .2968 .1852 .1149	1338 1211 1086 963 845 739	8.013 8.015 8.013 8.013 8.013 8.013	3.155 3.998 5.183 6.897 9.428 12.98	1.383 1.437 1.488 1.535 1.579 1.617	359.4 375.4 388.6 398.9 410.2 420.0

TABLE IV - CALCULATED PARAMETERS AT PRESSURES NEAR THROAT OF LIQUID

HYDROGEN WITH LIQUID FLUORINE

[Combustion chamber pressure, 300 lb/sq in. absolute.]

Equivalence ratio	Weight- percent fuel	P _x Pt	Pressure P _X (atm)	Temperature Tx (°K)	Mean molecular weight M _X	Ratio of nozzle- exit area to throat area Sx/St	Coefficient of thrust Cp	Specific impulse I (lb-sec/lb)
1.2	4.234	1.2 1.1 1.0 .9	14.04 12.87 11.70 10.53 9.363	4402 4363 4321 4276 4227	18.21 18.26 18.32 18.39 18.47	1.0358 1.0085 1.0000 1.0080 1.0326	0.5467 .6052 .6627 .7202 .7786	126.6 140.2 153.5 166.6 180.3
1.1	4.601	1.2 1.1 1.0 .9	14.07 12.89 11.72 10.55 9.377	4419 4382 4342 4298 4250	17.73 17.79 17.85 17.92 18.00	1.0359 1.0085 1.0000 1.0080 1.0327	0.5452 -6038 -6613 -7189 -7774	128.3 142.1 155.6 169.2 182.9
1.0	5.038	1.2 1.1 1.0 .9	14.07 12.90 11.73 10.55 9.381	4412 4376 4337 4294 4246	17.18 17.24 17.30 17.36 17.44	1.0357 1.0084 1.0000 1.0081 1.0328	0.5447 .6033 .6609 .7185 .7770	130.1 144.1 157.9 171.7 185.7
0.9	5.567	1.2 1.1 1.0 .9	14.07 12.89 11.72 10.55 9.377	4377 4341 4301 4258 4210	16.55 16.60 16.66 16.72 16.79	1.0356 1.0084 1.0000 1.0081 1.0327	0.5451 .6037 .6613 .7188 .7774	132.2 146.4 160.3 174.3 188.5
0.8	8.219	1.2 1.1 1.0 .9	14.04 12.87 11.70 10.53 9.360	4303 4266 4225 4180 4130	15.82 15.87 15.92 15.98 16.04	1.0353 1.0083 1.0000 1.0080 1.0325	0.5469 .6054 .6629 .7203 .7787	134.4 148.8 162.9 177.0 191.4
Q-7	7.045	1.2 1.1 1.0 .9	14.00 12.83 11.66 10.50 9.330	4180 4141 4098 4051 3999	14.99 15.03 15.08 15.13 15.19	1.0348 1.0082 1.0000 1.0079 1.0321	0.5502 .6085 .6658 .7231 .7813	136.8 151.2 165.5 179.7 194.2

TABLE IV - CALCULATED PARAMETERS AT PRESSURES MEAR THROAT OF LIQUID

HYDROGEN WITH LIQUID FLUORINE - Concluded

[Combustion-chamber pressure, 300 lb/sq in. absolute.]

							<u>-</u>	
Equivalence ratio r	Weight- percent fuel	Px Pt	Pressure P _X (atm)	Temperature Tx (OK)	Mean molecular weight M _x	Ratio of nozzle- exit area to throat area Sx/St	Coefficient of thrust C _F	Specific impulse I (lb-sec/lb)
0.6	-8.124	1.2 1.1 1.0 .9	13.95 12.79 11.63 10.46 9.300	4006 3965 3921 3873 3820	14.04 14.08 14.12 14.17 14.22	1.0344 1.0081 1.0000 1.0078 1.0317	0.5537 .8117 .6689 .7260 .7839	139.0 153.6 167.9 182.2 196.8
0.5	9.593	1.2 1.1 1.0 .9	13.92 12.76 11.60 10.44 9.281	3786 3745 3701 3654 3601	12.96 13.00 13.03 13.08 13.12	1.0341 1.0081 1.0000 1.0078 1.0316	0.5561 6140 .6710 .7280 .7858	141.1 155.8 170.2 184.7 199.4
0.4	11.71	1.2 1.1 1.0 .9	13.88 12.75 11.57 10.41 9.256	3512 3472 3429 3381 3328	11.68 11.71 11.74 11.77 11.81	1.0337 1.0080 1.0000 1.0077 1.0312	0.5588 .6165 .6733 .7302 .7879	143.7 158.6 173.2 187.8 202.7
0.3	15.03	1.2 1.1 1.0 .9	13.78 12.63 11.48 10.33 9.185	3135 3094 3048 2998 2942	10.09 10.10 10.12 10.14 10.16	1.0324 1.0077 1.0000 1.0074 1.0299	0.5666 .6239 .6803 .7367 .7939	147.8 162.8 177.5 192.2 207.1
0.2	20.97	1.2 1.1 1.0 .9	13.45 12.35 11.21 10.09 8.965	2502 2457 2407 2353 2293	7.991 7.994 7.997 8.001 8.004	1.0292 1.0070 1.0000 1.0068 1.0277	0.5914 .6472 .7022 .7573 .8130	153.7 168.2 182.5 196.7 211.2

TABLE Y - PROPERTIES AND COMPOSITION IN COMBUSTION CHAMBER AND FOLLOWING AN ISENTROPIC EXPANSION TO ASSIGNED EXIT TEMPERATURES

FOR LIQUID HYDROGEN WITH LIQUID FLUORINE

Combustion-chamber pressure, 300 lb/sq in. absolute]

Tempera-	Pressure P	γ ₆	Specific heat at	Coeffi- cient of	Coeffi-	Molecular weight	Equili	tion)		
(Ag)	(atm)	(alog p)	constant pressure op (oal/(g)	viscosity µ (poise ×10 ⁷)	thermal conduc- tivity k (cal/(sec) (cm)(°K)) ×10 ⁶	_и	HF	H ₂	.	H
r = 1.2 (4.23 percent fuel by weight)										
4568 4300 3200 3000 2000	80.41 11.16 .8425 .5970 .1151	1 1605 1 1560 1 2325 1 2720 1 3528	2.1944 2.0528 0.6673 0.5039 0.3841	33061 31153 16659 15707 10758	5146 4628 1321 988 548	17,955 18,356 19,736 19.806 19.840	0.64882 .68858 .82345 .83012 .83334	0.01029 .00758 .00027 .00007	0.25613 .23658 .17130 .16816 .16665	0.08474 .06725 .00498 .00165
r = 1.T (4:60-percent fuel by weight)										
4581 4300 3400 3200 2500	20.41 10.60 .9202 .5343 .1340	1.1574 1.1513 1.1506 1.1662 1.3145	2.4300 2.3337 1.4312 1.0793 0.4201	23170 21236 17707 16802 13340	5703 5246 2761 2026 727	17.487 17.916 19.363 19.620 19.914	0.66058 .70497 .85339 .87946 .90882	0.01565 .01236 .00267 .00126 .00000	0.81744 19457 .11883 .10568 .09104	0.10635 .08809 .02510 .01360 .00013
	<u> </u>				0 (5.04 per	cent fuel by				
4573 4300 3300 3200 2600	20.41 10.72 .6149 .4488 .07730	1.1560 1.1497 1.1403 1.1423 1.1946	2.8687 2.4958 1.6641 1.5895 0.7428	88169 81251 17304 16853 13934	6019 5607 3106 9796 1209	16.947 17:354 18.999 19:155 19:838	0.67037 .71443 .89086 .90754	0.03364 .02031 .00826 .00719	0.17662 .15294 .05870 .04982 .01064	0.12936 .11232 .04818 .03544 .00636
				r = 0	9 (5.57 per	rcent fuel by	y weight)			<u> </u>
4539 4300 3400 3200 8500	20.41 11.70 1.024 .5786 .09488	1.1566 1.1516 1.1486 1.1564 1.3321	2.5809 2.4917 1.6447 1.3662 0.6799	22011 21196 17628 16712 13230	6016 5597 3143 2511 1074	16.326 16.658 17.991 18.257 18.888	0.67693 .71424 .85933 .86625 .93773	0.03604 .03366 .02834 .02944	0.13447 .11371 .03483 .02118 .00104	0.15256 .13840 .07750 .06314 .01710
r = 0.8 (6.22 percent fuel by weight)										
4470 4200 3100 3000 2300	20.41 11.04 .6733 .5193 .09092	1.1598 1.1568 1.1738 1.1778 1.2436	2.4580 8.2954 1.3316 1.1450 0.6304	21619 20654 15943 15460 11980	5658 5062 3192 1991 981	15.612 15.950 17.303 17.407 17.914	0.67761 .71565 .84647 .85385 .88406	0.05618 .05570 .07517 .07932 .10540	0,09296 .07162 .00759 .00534 .00015	0.17325 .15703 .07077 .06149 .01039
	r = 0.7 (7.05 percent fuel by weight)									
4355 4100 2900 2800 2100	20.41 11.71 .6274 .4855 .08977	1.1666 1.1653 1.1846 1.1899 1.2756	2.2540 2.0826 1.1403 1.0573 0.5760	20877 19911 14607 14133 10736	5056 4475 1888 1708 777	14.796 15.074 16.352 16.440 16.796	0.66793 .69698 .79797 .80294 .82172	0.09007 .09403 .14493 .15033 .17393	0.05595 .04049 .00805 .00135	0.18605 .16850 .05505 .04538 .00433

TABLE V - PROPERTIES AND COMPOSITION IN COMBUSTION CHAMBER AND FOLLOWING AN ISENTROPIC EXPANSION TO ASSIGNED EXIT TEMPERATURES

FOR LIQUID HYDROGEN WITH LIQUID FLUORINE - Demoluded

NACA

Combustion-chamber pressure, 500 lb/sq in. absolute]

Tempera-		Ϋ́в	heat at cien constant visc pressure cp (po	Coeff- cient of	Coeffi-	Molecular weight	Equilibrium composition (mole fraction)				
ture (^O K)		$\left(\frac{\partial \log P}{\partial \log \rho}\right)_{B}$		viscosity µ (poise ×10 ⁷)	thermal conduc- tivity k [cal/(sec) (cm)(°k)) . ×106	thermal conduc- tivity k cal/(sec) (cm)(°K))	XCP	Нg	P	н	
	·			r = 0.	6 (8.12 per	reent fuel by			 		
4187 3900 2800 2700 1900	20.41 11.10 .7898 .6158 .09595	1.1758 1.1744 1.1931 1.8000 1.3074	8.0844 1.9207 1.1164 1.0287 0.5545	19680 18539 13702 13848 9500	4 4 5 5 3 8 8 6 1 7 5 4 1 5 7 8 6 7 9	13.870 14.145 15.168 15.838 15.800	0.64244 .66615 .73265 .73636 .74958	0.14610 .15777 .22320 .22861 .24920	0.02826 .01782 .00079 .00051	0.18319 .15826 .04335 .03453 .00128	
	r = 0.5 (9.59 percent fuel by weight)										
3967 3700 2600 2400 1700	20.41 11.57 .8624 .5428	1.1818 1.1807 1.8158 1.8394 1.5304	1.9984 1.8561 0.9874 0.8330 0.5733	18023 16954 12286 11406 8271	3951 3470 1433 1154 621	13.812 13.036 13.847 13.924 14.009	0.59784 .61325 .55869 .66250	0.23099 .24760 .31790 .32517 .33317	0.01177 .00703 .00018 .00006	0.15940 .13212 .02323 .01328 .00025	
				r = 0.		roent fuel b	oy weight)				
3693 3400 2400 2100 1400	30.41 10.86 1.143 .5993 .1147	1.1878 1.1888 1.2501 1.2900	1.9132 1.7165 0.8928 0.7424 0.6194	15931 14811 10881 9583 6613	3390 2855 1186 905 543	11.561 11.758 12.238 12.281 12.297	0,53340 .54452 .56864 .57068 .57143	0.34681 .36787 .48170 .48670 .42856	0.00380 .00188 .00003 .00000	0.11599 .08573 .00964 .00862	
r = 0.3 (15.03 percent fuel by weight)											
3323 3100 8100 1700 1200	20.41 12.80 1.596 .6606 .1725	1.8004 1.8073 1.8977 1.3386 1.3667	1,7094 1,5851 0,8584 0,7730 0,7176	13313 18534 8903 7383 5409	8606 8820 979 748 518	10.007 10.101 10.311 10.319 10.380	0,44681 ,45138 ,46112 ,46151 ,46154	0,49251 .50615 .53708 .53836 .53846	0,00073 .00036 .00000 .00000	0,05995 .04211 .00180 .00013 .00000	
r = 0.2 (20.97 percent fuel by weight)											
2720 2500 1500 1200 800	20.41 13.40 1.553 .6648 .1524	1.8518 1.8704 1.3465 1.3667 1.3908	1.3631 1.2328 0.9639 0.9242 0.8827	9811 9144 5948 4909 3460	1643 1412 757 606 413	7.969 7.991 8.013 8.013	0.33148 .33840 .33333 .33333 .33333	0.65754 .66203 .66666 .66667	0.00003 .00001 .00000 .00000	0.01096 .00557 .00001 .00000	

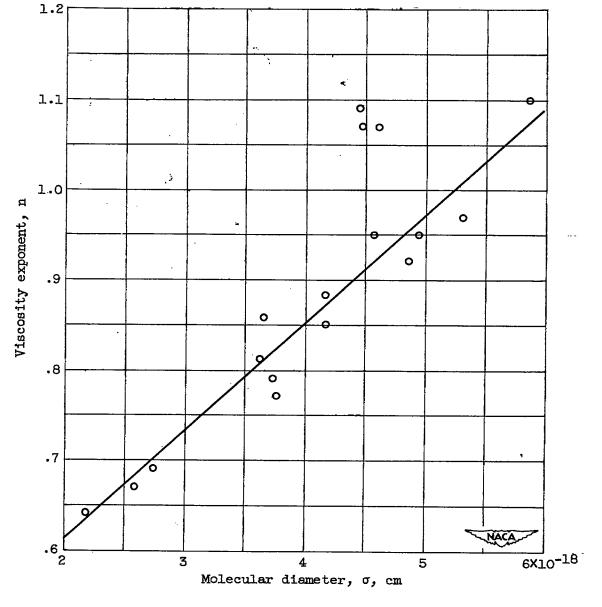


Figure 1. - Exponent n for equation $\mu = \mu_{288} \left(\frac{T}{288}\right)^n$. (Fig. 1 of reference 7)

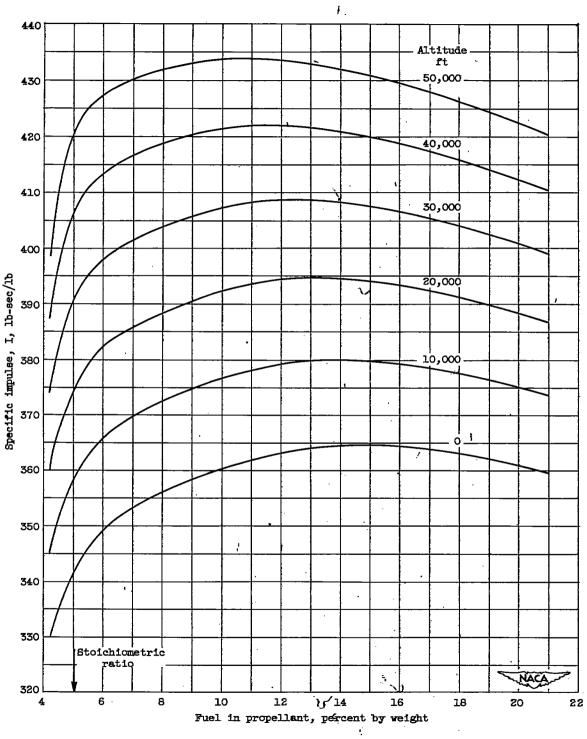


Figure 2. - Theoretical specific impulse of liquid hydrogen with liquid fluorine. Isentropic expansion assuming equilibrium composition; combustion-chamber pressure, 300 pounds per square inch absolute; exit pressure corresponding to altitude indicated.

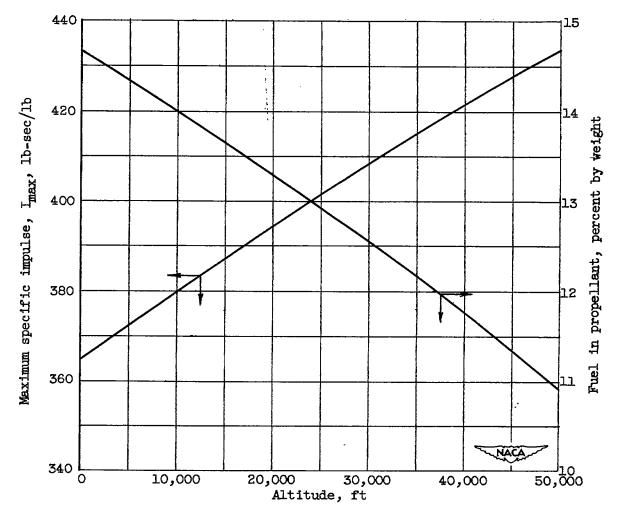


Figure 3. - Maximum theoretical specific impulse and corresponding weight percent of fuel in propellant of liquid hydrogen with liquid fluorine. Isentropic expansion assuming equilibrium composition; combustion-chamber pressure, 300 pounds per square inch absolute; exit pressure corresponding to altitude indicated.

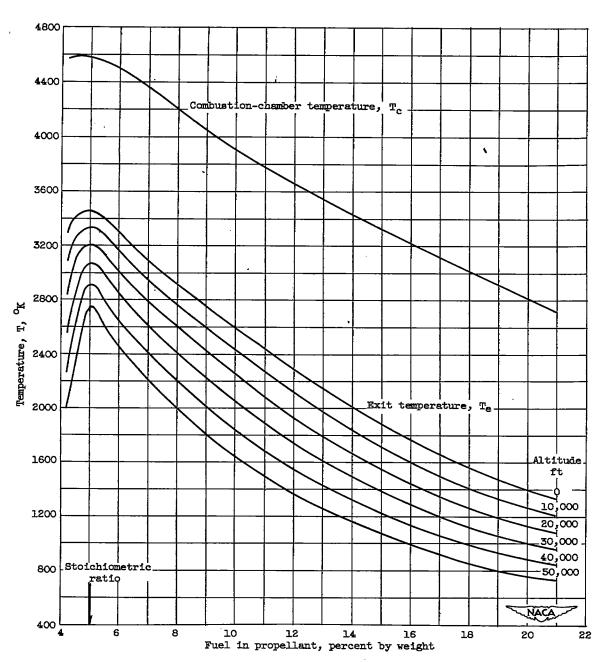


Figure 4. - Theoretical combustion-chamber temperature and nozzle-exit temperature of liquid hydrogen with liquid fluorine. Isentropic expansion assuming equilibrium composition; combustion-chamber pressure, 300 pounds per square inch absolute; exit pressure corresponding to altitude indicated.

26 NACA RM E52L11.

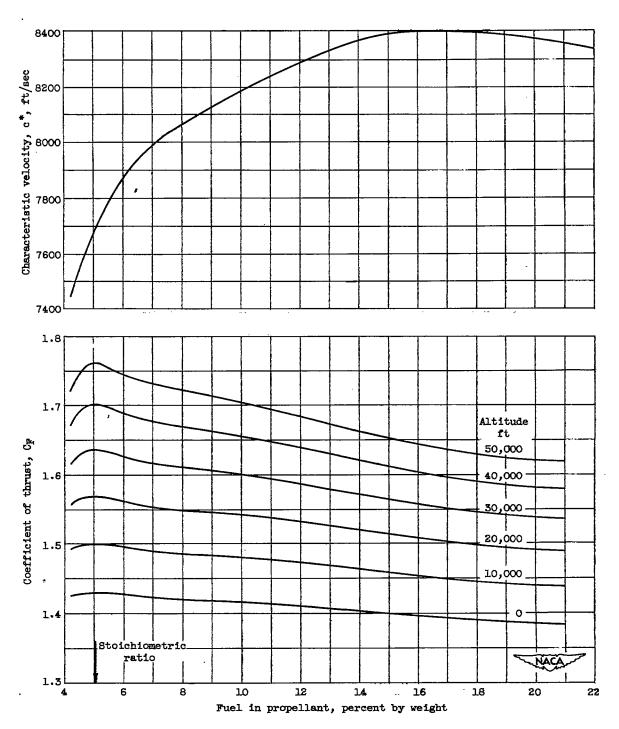


Figure 5. - Theoretical characteristic velocity and coefficient of thrust of liquid hydrogen and liquid fluorine. Isentropic expansion assuming equilibrium composition; combustion-chamber pressure, 300 pounds per square inch absolute; exit pressure corresponding to altitude indicated.

NACA RM E52Lll

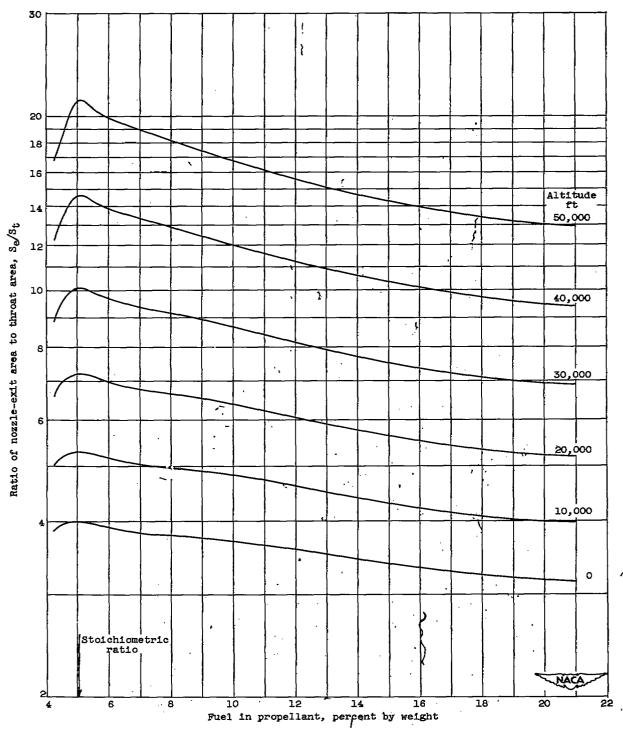


Figure 6. - Theoretical ratios of nozzle-exit area to throat area of liquid hydrogen with liquid fluorine. Isentropic expansion assuming equilibrium composition; combustion-chamber pressure, 300 pounds per square inch absolute; exit pressure corresponding to altitude indicated.

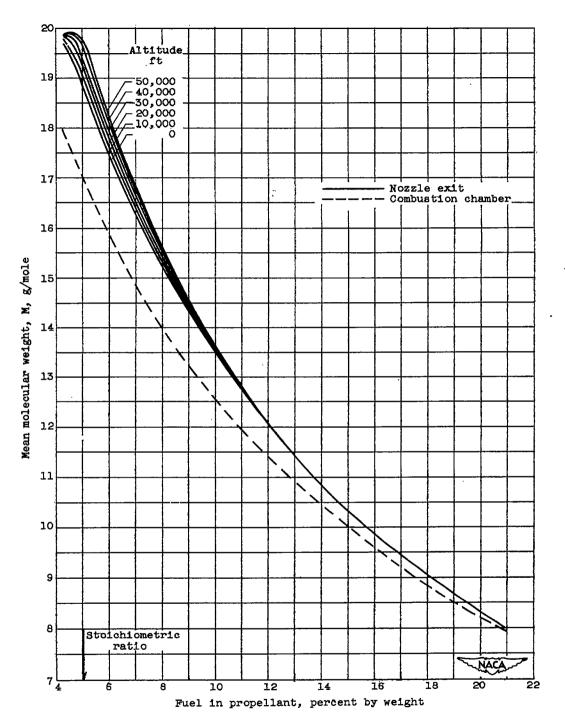


Figure 7. - Theoretical mean molecular weight in combustion chamber and at nozzle exit of liquid hydrogen with liquid fluorine. Isentropic expansion assuming equilibrium composition; combustion-chamber pressure, 300 pounds per square inch absolute; exit pressure corresponding to altitude indicated.

SECURITY INFORMATION

